Hybrid Example-Based Single Image Super-Resolution

نویسندگان

  • Yang Xian
  • Xiaodong Yang
  • Yingli Tian
چکیده

Image super-resolution aims to recover a visually pleasing high resolution image from one or multiple low resolution images. It plays an essential role in a variety of real-world applications. In this paper, we propose a novel hybrid example-based single image super-resolution approach which integrates learning from both external and internal exemplars. Given an input image, a proxy image with the same resolution as the target high-resolution image is first generated from a set of externally-learnt regression models. We then perform a coarse-tofine gradient-level self-refinement on the proxy image guided by the input image. Finally, the refined high-resolution gradients are fed into a uniform energy function to recover the final output. Extensive experiments demonstrate that our framework outperforms the recent state-of-the-art single image super-resolution approaches both quantitatively and qualitatively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deep Model for Super-resolution Enhancement from a Single Image

This study presents a method to reconstruct a high-resolution image using a deep convolution neural network. We propose a deep model, entitled Deep Block Super Resolution (DBSR), by fusing the output features of a deep convolutional network and a shallow convolutional network. In this way, our model benefits from high frequency and low frequency features extracted from deep and shallow networks...

متن کامل

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Improving a Single Down-Sampled Image Using Probability-Filtering-Based Interpolation and Improved Poisson Maximum A Posteriori Super-Resolution

We present a novel hybrid scheme called “hyper-resolution” that integrates image probability-filtering-based interpolation and improved Poisson maximum a posteriori (MAP) super-resolution to respectively enhance high spatial and spatial-frequency resolutions of a single down-sampled image. A new approach to interpolation is proposed for simultaneous image interpolation and smoothing by exploiti...

متن کامل

Adaptive Markov Random Fields for Example-Based Super-resolution of Faces

Image enhancement of low-resolution images can be done throughmethods such as interpolation, super-resolution using multiple video frames, and example-based super-resolution. Example-based super-resolution, in particular, is suited to images that have a strong prior (for those frameworks that work on only a single image, it is more like image restoration than traditional, multiframe super-resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015